BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

COURSE PLAN

Title of Course	:	Machine Learning	Course Code	:	UCS761C
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	•••	5	Year	•••	2023-24

Prerequisites:

Mathematics, Data Structures and Algorithms

Course Objectives:

	The Course objectives are:
1	To introduce students to the basic concepts and techniques of Machine Learning.
2	To become familiar with regression methods, classification methods, clustering methods.
3	To become familiar with Dimensionality reduction Techniques.

Course Outcomes:

	At the end of the course the student should be able to:
1	Define machine learning and types of learning algorithms
2	Explain various machine learning algorithms
3	Apply machine learning algorithm to solve problems of moderate complexity
4	Analyze performance of algorithms by varying some parameters
5	To formulate machine learning model for the simple problems

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	The students will be able to:															
1	Define machine learning and types of learning algorithms		1	1	1									1		1
2	Explain various machine learning algorithms	1	2	2	2									2		2
3	Apply machine learning algorithm to solve problems of moderate complexity	1	3	3	2	3								3		3
4	Analyze performance of algorithms by varying some parameters	1	3	3	3	3								3		3
5	To formulate machine learning model for the simple problems	1	3	3	3	3								3		3

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

Competency	Indicators
1. Identify complex engineering	i. Students should be able to identify
problem	problems that require ML solutions
	ii. Identify the domains where ML
	models may be developed
2. Design a system and identify system	iii. Analysis of the problem, represent the
requirements	knowledge
	iv. Encode the knowledge
	v. Augment the knowledge
	vi. Analyze the complexity of the solution
3. Consideration for public health,	vii. Designing systems for healthcare
safety	viii. Employ knowledge representation,
	search, model building and training,
	and model validating
4. Cultural, societal and environmental	ix. Applying the ML for societal needs
considerations	and environmental protection,
	especially the problems in agriculture,

forestry, healthcare, telemonitoring,
ensuring social and ethical
responsibilities.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

	Unit Learning Outcome (ULO)	со	BLL	PI
	UNIT-I			addressed
1.1	To introduce ML	CO1	2	i, ii
1.2	To identify the real life problems which can be solved by	CO1	2	i, ii
	ML			
1.3	To understand how to formulate a problem by considering	CO4	4	Vii,viii
	design issues of learning system			

UNIT-II explain and apply a decision tree algorithm to solve ML oblems explain Neural Network Representations identify Appropriate Problems For Neural Network arning derive back propogation algorithm. design an ANN system for face recognition problem UNIT-III	CO3, CO2 CO2 CO1 CO2 CO2 CO5	3 2 1 4	i, ii, iii, iv, viii, ix i,ii,iii i, ii
belems explain Neural Network Representations identify Appropriate Problems For Neural Network arning derive back propogation algorithm. design an ANN system for face recognition problem UNIT-III	CO2 CO2 CO1 CO2	2 1 4	viii, ix i,ii,iii i, ii
o identify Appropriate Problems For Neural Network arning o derive back propogation algorithm. o design an ANN system for face recognition problem UNIT-III	CO1 CO2	1 4	i, ii
arning derive back propogation algorithm. design an ANN system for face recognition problem UNIT-III	CO2	4	,
design an ANN system for face recognition problem UNIT-III			
UNIT-III	CO5	_	viii
		3	i, ii, iii, iv, viii, ix,
o understand the concept of Baye's learning d identify the problems to be solved by it.	CO1	2	i, ii
derive various relationships like Maximum elihood and least squared hypothesis, aximum likelihood hypothesis and edicting probabilities,	CO4	4	viii
explain and apply a Naive Bayes classifier and design vive Bayes classifier for text recognition	CO3, CO2, CO5	3	i, ii, iii, iv, viii, ix,
understand and apply k-Nearest Neighbor Learning gorithm to various problems	CO3, CO2	2, 3	i, ii, iii, iv, viii, ix,
describe Radial Basis function and case based reasoning	CO2	2	li, vi
acquire knowledge on Dimensionality eduction (DR) and its categories	CO2	2	iii, iv, v, vi
describe and apply various DR chniques/algorithm such as PCA and LDA.	CO3	3	iii, iv, v, vi
UNIT-IV	CO3,	3	iii, iv, v, vi
UNIT-IV explain and apply the various clustering algorithm	CO2	2	viii
- · · · · · ·	CO2 CO4	2	
) (CO2	CO2understand the performance evaluation ofCO42

Course Content:

Hours Required	Topic to be covered	N	1ode of Delivery
01	Introduction: What is Machine Learning? Examples of Machine Learning Applications	i.	Chalk and talk in classroom
01	Well posed learning problems	ii.	Lecture combined
01	Designing Learning System		with discussions
01	Perspectives and issues in Machine Learning.	iii.	Assignments
01	Decision Tree Learning: Introduction, Decision	iv.	Group Assignment

	tree representation				
01	Appropriate problems for decision tree learning				
01	the basic decision tree learning algorithm				
01	the basic decision tree learning algorithm Contd				
01	Hypothesis space search in decision tree learning				
01	Inductive Bias in decision tree learning, Issues in				
	decision tree learning				
01	Artificial Neural Networks (ANN): Introduction, Neural Network Representations	i.	Lecture combined with discussions		
01	Appropriate Problems For Neural Network Learning	ii.	Tutorial		
01	Perceptron	iii.	Assignments		
01	Multilayer Networks And The Back propagation Algorithm	iv. v.	Group Assignment Presentations or		
01	Remarks On The Back propagation Algorithm		real time		
01	An Illustrative Example: Face Recognition.		applications		
01	Kernel Machines: Introduction, Optimal Separation Hyper plane				
01	the non separable case: soft margin hyper plane, V- SVM				
01	Kernel Trick, Vectorial Kernels, Defining kernel, Multiple kernel learning				
01	Multiclass kernel machines, kernel machine for regression, One class kernel machine				
01	Bayesian learning: Introduction, Bay's theorem	i.	Lecture combined		
01	Maximum likelihood and least squared hypothesis, Maximum likelihood hypothesis for predicting probabilities	ii. iii.	with discussions Tutorial Demonstration		
01	Minimum Description length principle, Bay's optimal classifier	iv. v.	Group Assignment Seminars,		
01	Gibbs algorithm, Naive Bay's Classifier	v.	Presentations		
01	An Example: Classify Text.		11 coefficients		
01	An Example: Classify Text Contd				
01	Bayesian Belief networks, EM Algorithm				
01	Instance Based Learning: Introduction, k-Nearest Neighbor Learning				
01	Locally Weighted Regression				
01	Radial Basis function, and case based reasoning				
01	Dimensionality Reduction: Introduction, Subset Selection	i.	Lecture combine with discussions		
01	Principal Components Analysis	ii.	Assignments		
01	Principal Components Analysis Contd	iii.	Demonstration		
01	Factor Analysis	iv.	Group Assignmen		
01	Multi dimensional scaling	v.	Presentations		
01	Linear descreminant analysis, isomap, Locally Linear Embedding				
01	Clustering: Introduction, Mixture Densities				
01	K-means Clustering				

01	Maximization Algorithm	
01	Mixture Latent Variable models, Supervised	
	learning after clustering	

Review Questions:

		•					
	i. Students should be able to identify problems that require ML solutions						
ii. Identify the domains where ML models may be developed							
	iii. Analysis of the problem, represent the knowledge						
iv. Encode the knowledge							
v. Augment the knowledge							
vi. Analyze the complexity of the solution							
vii. Designing systems for healthcare							
viii. Employ knowledge representation, search, model building and training, and model							
validating							
ix. Applying the ML for societal needs and environmental protection, especially the problem in agriculture, forestry, healthcare, telemonitoring, ensuring social and ethical							
responsibilities.							
Review Questions	ULO	BLL	PI addressed				
UNIT-I	1.0		•				
What do you mean by a well –posed learning problem? Explain	1.2		i				
with example, the important features that are required to well –		2					
define a learning problem.	1.1						
Is regression a supervised learning technique? Justify your	1.1	2	i,ii				
answer. Compare regression with classification with examples.	1.2						
Design a checkers problem as a learning problem using various	1.3	3	ii, vii				
stages of machine learning	1.4						
Write the steps of ID3 Algorithm. Also explain the structure of	1.4	2	vii, viii,ix				
its hypothesis space.	1.4		iii				
Explain with an example how ID3 algorithm can be improved	1.4	4	111				
to incorporate continuous valued attributes	1.4						
Consider the following set of training examples:	1.4		viii				
Instance Class A1 A2							
<u>1 + T T</u>							
<u>2</u> + T T							
<u> </u>							
<u>4 + F F</u>		3					
5 - F T		5					
i. What is the entropy of this collection with respect to class?							
ii. Construct the Decision tree using ID3 algorithm.							
UNIT-II			···· -				
Explain the concept of a Perceptron with a neat diagram. Is	2.1	4	iii, ix				
Perceptron can be used to implement XOR gate? Justify your							
answer with example.							
What is Gradient Descent? Derive Gradient Descent rule.	2.3	4	vi				

Write the significance of gradient descent rule over the			
percepron training rule. Discuss the application of ANN which is used for learning to	2.4	2	viii, ix
steer an autonomous vehicle.	2.4		VIII, IX
Explain encoding input and output in face recognition system	2.4	4	iv
(ANN-system)	2.1		1 V
What is the significance of sigmoid unit? Calculate the output 'O' of 'Y' in the following figure, Where 'Y' is sigmoid unit.	2.2	3	viii
$0.6 \longrightarrow X1 \qquad 0.3 \qquad 0.3$			
$0.5 \longrightarrow X2 \longrightarrow 0.3 \longrightarrow Y \longrightarrow 0$			
0.8 X3 0.5			
What is hyper plane? Explain multiple kernel learning.	2.5	2	i.ii
UNIT-III			
A patient takes lab test and the result comes back positive. It is known that the test returns a correct positive result in 0nly 98% of the cases and a correct negative result in only 97% of the cases. Furthermore, only 0.008 of the entire population has this disease. I. What is the probability that this patient has cancer?	3.1	6	viii, ix
II. What is this probability that he does not have cancer?			
II. What is this probability that he does not have cancer?III. What is the diagnosis?			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and	3.2	4	vi
III. What is the diagnosis?			
III.What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV,	3.2 3.3	4	vi
III.What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Red Sports Domestic Yes			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No Red Sports Domestic Yes			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No Red Sports Domestic Yes Yellow Sports Domestic No			
III. What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.ColorTypeOriginStolen RedRedSportsDomesticYesRedSportsPomesticYesYellowSportsYellowSportsImportedYes			
III. What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.ColorTypeOriginStolen RedRedSportsDomesticYes RedYellowSportsYellowSportsImportedYes YesYellowSUVSUVImportedYellowSUV			
III. What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No Red Sports Domestic Yes Yellow Sports Domestic No Yellow Sports Imported Yes Yellow SUV Imported No Yellow SUV Imported Yes			
III. What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No Red Sports Domestic Ves Yellow Sports Domestic No Yellow Sports Imported Yes Yellow SUV Imported No Yellow SUV Imported Yes			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No Red Sports Domestic Yes Yellow Sports Imported Yes Yellow SUV Domestic No			
III. What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.Color Type Origin Stolen Red Sports Domestic YesRedSportsDomesticRedSportsDomesticYellowSportsDomesticYellowSportsDomesticYellowSUVImportedYellowSUVImportedYellowSUVNoYellowSUVNoYellowSUVNoYellowSUVNoYellowSUVImportedYellowSUVImportedYellowSUVNoYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImportedYellowSUVImpo			
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic Yes Yellow Sports Domestic No Yellow SUV Imported Yes Yellow SUV Imported No Yellow SUV Imported No Yellow SUV Imported Yes Yellow SUV Imported No Red Sports Imported No Yellow SUV Imported No Yellow SUV Imported No Red Sports Imported No Red Sports Imported Yes Describe with example K-Nearest Neighbour learning algorithm for the following.	3.3	4	viii,ix
III. What is the diagnosis? Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis. Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data. Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic Yes Yellow Sports Domestic No Yellow SUV Imported Yes Yellow SUV Imported Yes Yellow SUV Imported No Red Sports Imported Yes Yellow SUV Imported Yes Yellow SUV Imported No Red Sports Imported Yes Yellow SUV Imported No Red Sports Imported Yes Describe with example K-Nearest Neighbour learning algorithm for the following. i. Discrete valued target function Veiton Veiton Veiton Veiton	3.3	4	viii,ix
III.What is the diagnosis?Derive the relationship between Maximum Likelihood and Least Square Error Hypothesis.Use the Naïve Bayes classifier to classify the car (red, SUV, Domestic). Given the data.Image: Color Type Origin Stolen Red Sports Domestic Yes Red Sports Domestic No Red Sports Domestic Yes Yellow Sports Domestic No 	3.3	4	viii,ix

Given the d	lataset.				3.4	2	vii, ix
Age	BP	Cholestoral	Heart rate	Chest pain			
29	130	250	187	1			
37	130	204	172	1			
41	120	236	178	0			
56	120	354	163	0			
57	140	192	148	1			
			KNN algorith	Cholestoral=24 m with k=1, k=			
	eature s	selection and		on? Differentia ction methods			iii, iv
Use the PC	A to tra	nnsform follow	ving data. 4 3 1		4.2	2	iii,iv
What is Multidimer		Linearity ir ty Scaling.	n data? E	Briefly descri	be 4.2	4	iii,
Calculate	within-		ing data.	nd between-cla	uss 4.2	5	ix
Explain in	brief m	ethods of hiera	archical cluste	ring.	4.3	2	vi

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1: writing answer for review questions on UNIT-I, writing a python program to solve a given problem using decision tree algorithm	2	CO1, CO2, CO3, CO4, CO5	i, ii, lii,iv, v, vi, vii, viii, ix	1, 2, 3,4	1,2, 3, 4, 5, 6, 7, 9
Assignment 2: writing answer for review questions on UNIT-II, writing a python program to solve a given problem using ANN	2	CO1, CO2, CO3, CO4, CO5	i, ii, lii,iv, v, vi, vii, viii, ix	1, 2, 3,4	1,2, 3, 4, 5, 6, 7, 9
Assignment 3: writing answer for review questions on UNIT-III, writing a python program to solve a given problem using Bayes Learning	2	CO1, CO2, CO3, CO4, CO5	i, ii, lii,iv, v, vi, vii, viii, ix	1, 2, 3,4	1,2, 3, 4, 5, 6, 7, 9
Assignment 4: writing answer for review questions on UNIT-IV, writing a python program to solve a given problem using any DR technique	2	CO1, CO2, CO3, CO4, CO5	iii, iv, v, vi	1, 2, 3,4	1,2, 3, 4, 5, 6, 7, 9
Assignment 5: writing a python program to solve a given problem using KNN and Kmean clustering algorithm	2	CO1, CO2, CO3, CO4, CO5	i, ii, lii,iv, v, vi, vii, viii, ix	1, 2, 3,4	1,2, 3, 4, 5, 6, 7, 9

Professor and Head Professor and Head Partment of Computer Science and Engineering Basaveshwar Engineering College Badalkot 58700

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

COURSE PLAN

Title of Course	:	User Experience Design	Course Code	:	UCS073E
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	5	Year	:	2023-224

Prerequisites:

Course Objectives:Objective of the Course The aim of the UXDesign course is to provide

Students with the knowledge of user- centred design, user -centred methods in design, graphic design on screens, simulation and prototyping techniques, usability testing methods, interface technologies and user centred design in corporate perspective.

CourseOutcomes

СО	Students will be able to
CO1	Explain iterative user-centered design of graphical user interfaces and user experience.
CO2	Apply the user Interfaces to different devices and requirements.
CO3	Describe the components of user experience, especially emotional impact.
CO4	Design better user experience through user interfaces
CO5	Create high quality professional documents and artifacts related to the design process.

	CO-PO Mapping															
	Subject/Subject Code:	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The s	tudents will be able to:									·						
1	Explain iterative user- centered design of graphical user interfaces and user experience.		3		2			2	1	2	3		3	3		
2	Apply the user Interfaces to different devices and requirements.		3		2				1	3			3	3		
3	Describe the components of user experience, especially emotional impact.	3							1	2	3		3	3		
4	Design better user experience through user interfaces	3						2	1	2	3		3			
5	Create high quality professional documents and artifacts related to the design process.								1	2	3		3			

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Competency	Indicators
1. Identify complex engineering	i. Students should be able to identify
problem	problems that require better user
	Experience
	ii. Identify the domains where smart
	Systems may be developed
2. Design a system and identify system	iii. Analysis of the problem, represent the
requirements	knowledge
	iv. Encode the knowledge
	v. Augment the knowledge
	vi. Analyze the complexity of the solution
3. Consideration for public health,	vii. Designing systems with better
safety	usability .
	viii. Employ knowledge representation,
	search, inference, and reasoning
	abilities
4. Cultural, societal, and environmental	ix. Bringing in Better user experience for
considerations	all class of users in different domain
	applications.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	СО	BLL	PI
			addressed
The user experience (UX) is how a user interacts with and	1,2	1,2,4	i, ii, iii, iv, v,
experiences a product, system or service . It includes a person's perceptions of utility, ease of use, and efficiency.			and vi
Analyse various control strategies and solve problems considering user characteristics	3	3,5	vii
Apply reasoning under inconsistency and uncertainties	4	3,4	viii
Demonstrate the knowledge of user survey. and intelligent planning	5	2, 6	ix

Course Content:

Hours Required	Topic to be covered		Mode of Delivery
01	User Interface Design (UI	i.	Chalk and talk in
01) -The Relationship Between UI and UX ,	1	classroom
01	Roles in UI/UX, A Brief Historical Overview of	ii.	Lecture combined
	Interface Design, Interface Conventions		with discussions
01	, Approaches to Screen Based UI, Template vs	iii.	Assignments
	Content,	iv.	Group Assignment
01	Formal Elements of Interface Design,		
01	Active Elements of Interface Design.		
02	, Composing the Elements of Interface Design,		
02	UI Design Process		
01	Visual Communication design component in	i.	Lecture combined
	Interface Design		with discussions
01	The User Interface Design process-	ii.	Tutorial
01	Obstacles, Usability, Human characteristics in	iii.	Assignments
	Design,	iv.	Group Assignment
01	Human Interaction speeds,	v.	Seminars,
02	Business functions-Business definition]	Presentations
02	requirement analysis, Basic business functions,		
02	Design standards		
01	UX Basics- Foundation of UX design,	i.	Lecture combined
01	Good and poor design,		with discussions
01	Understanding Your Users,	ii.	Tutorial
01	onderstanding rour Osers,	iii.	Demonstration
		iv.	Group Assignment

_			
01	Designing the Experience-Elements of user Experience,	v.	Seminars,
01	Visual Design Principles,		Presentations
01	Functional Layout,	vi.	Group Discussion
01	Interaction design,		
01	Introduction to the Interface,		
01	Navigation Design,		
01	User Testing,		
02	Developing and Releasing Your Design		
01	User Study- Interviews,	i.	Lecture combined
01	writing personas:	ii.	with discussions Assignments
01	user and device personas	iii.	Demonstration
01	, User Context, 2	iv.	Group Assignment
01	Building Low Fidelity	V.	Seminars, Presentations
01	Wireframe and High-Fidelity		FICSCILATIONS
01	Polished Wireframe Using		
01	wireframing Tools,		
01	Creating the working Prototype using Prototyping		
	tools,		
01	Sharing and Exporting Design		· · · · · · · · · · · · · · · · · · ·

Review Questions:

- ii. Identify the domains where user experience is important concern
- iii. Analysis of the problem, represent the visibility design
- iv. Encode the knowledge
- v. Augment the knowledge
- vi. Analyze the usability of the solution
- vii. Designing systems for user comfort
- viii. Employ knowledge out of user survey

ix.	Conduction of user tests			
	Review Questions	ULO	BLL	PI
				addressed
	Define the term Usability. Describe the usability assessment	1	1	i
	process in UI design path.			
	Write about some practical measures of Usability	1	2	i
a.	Write comments on important human characteristics that are to	1	2	ii
	be considered in UI design			
	Describe the principles of Interface screen design	4	6	vii
a.	What are menus? Describe types of menus highlighting	1	3	ii
	advantages of each type in UI design.			
b.	Brief about guidelines for formatting menus.	1	2	i
	Give all the details of design of aUI where many types of menus	1	2	iv
	are used. Take a suitable example and describe formatting,			
	content and functions of menus.			
	Define user Interface Design. Explain the Importance and	1	2	v
	benefits of Good Design.			

List and Explain Characteristics of Graphical User Interface(GUI).	2	5	viii
Briefly Explain the General Principles of user Interface Design.	2	3	iii
List and Explain the Pitfalls in Development Path of Design process.	4	6	viii
Discuss the advantages and limitations of graphical systems	1	4	iv
Describe the concept of direct manipulation	2	4	iv
Assume that you are suppose to design a college website(Web Interface) give all the design details concept wise	2	2	х
What is User Experience (UX) design?	3	5	vi
What is your design process?	3	2	х
describe the difference between user interface (UI) design and UX design?	4	2	iii
What is a user persona and why is it important in UX design?	3	2	viii
How do you approach information architecture?	4	4	vii
What are some common UX design principles?	3	5	х

Evaluation Scheme:

Assessment		Marks	Weightage
CIE-I		40	20
CIE-II		40	20
Assignments/ Quizzes/ Case Study/ Course Project/ Term		10	105
Paper/Field Work			
SEE		50	50
То	tal	100	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	РО
Assignment 1:	2	1	i, ii	1	1,2
Assignment 2: Seminar on a given topic related	2	2	lii, iv	2	3,4
Assignment 3:	2	3	v, vi	2	5
Assignment 4: Preparing a PPT for the given topic,	2	4	vii,	3	6
related to A design			viii		
Assignment 5: Designing in Figma environment	2	5	ix	4	12

Professor and Head Separtment of Computer Science and Engineering Basaveshwar Engineering College Badalkof 587102

Dr. vilas Naik

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

COURSE PLAN

Title of Course	:	Software Testing	Course Code	:	UCS039E
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	VII	Year	•••	2023-24

Prerequisites: Software Engineering

Course Objectives:

The Course objectives are:
Become familiar the importance of software quality/software testing and apply software testing
techniques for information systems development.
Generate test cases from software requirements using various test processes for continuous quality
improvement.
Apply software testing techniques in commercial environments and assess the adequacy of test
suites using control flow, data flow, and program mutation.
Develop the abilities to identify the inputs and deliverables of the testing process and work together as
a team in preparing a report.
Use industry-standard testing tools for real time applications.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	Programme Outcomes															
No	Course Outcomes															
The	students will be able to:															
1	Become familiar the importance															
	of software quality/software															
	testing and apply software	1	1	1	2	3	0	0	0	0	0	0	1	3	2	1
	testing techniques for	1	1	1	2	3	U	0	0	0	0	0	1	5	5	1
	information systems															
	development.															
2	Generate test cases from															
	software requirements using															
	various test processes for	0	3	3	3	3	0	0	0	0	2	0	2	2	2	3
	continuous quality															
	improvement.															
3	Apply software testing															
	techniques in commercial															
	environments and assess the	0	2	2	3	3	0	0	0	0	2	0	2	3	2	2
	adequacy of test suites using	0	2	2	5	5	0	0	0	0	2	0	2	5	2	2
	control flow, data flow, and															
	program mutation.															

4	Develop the abilities to identify the inputs and deliverables of the testing process and work (together as a team in preparing a report.	0	3	3	2	2	0	0	0	0	0	0	0	2	1	1
5	Use industry-standard testing tools for real time applications.	0	2	2	2	3	2					2	3	2	2	3

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Competency	Indicators
4.1 Demonstrate an ability to conduct	4.1.1Define a problem, its scope and importance for
investigations of technical issues consistent	purposes of investigation
with their level of knowledge and	4.1.2Examine the relevant methods, tools and techniques of
understanding along with research methods	experiment design, system calibration, data acquisition,
	analysis and presentation
43 Demonstrate an ability to analyze data	4.3.1 Use appropriate procedures, tools and techniques to
and reach a valid conclusion	conduct experiments and collect data.
	4.3.2 Analyze data for trends and correlations, stating
	possible errors and limitations
	4.3.3 Represent data in tabular and/or graphical forms so as
	to facilitate analysis and explanation of the data, and
	drawing of conclusions
	4.3.4 Synthesize information and knowledge about the
	problem from the raw data to reach appropriate conclusions
5.1 Demonstrate an ability to identify/ create	Identify modern engineering tools such as computer-aided
modern engineering tools, techniques and	drafting, modeling and analysis; techniques and resources
resources	for engineering activities
	Create/adapt/modify/extend tools and techniques to solve
	engineering problems
5.2 Demonstrate an ability to select and apply	5.2.1 Identify the strengths and limitations of tools for (i)
discipline- specific tools, techniques and	acquiring information, (ii) modeling and simulating, (iii)
resources	monitoring system performance, and (iv) creating
	engineering designs.
	Demonstrate proficiency in using discipline-specific tools

5.3 Demonstrate an ability to evaluate the suitability and limitations of tools used to	5,3,1 Discuss limitations and validate tools, techniques and resources
solve an engineering problem	Verify the credibility of results from tool use with reference
	to the accuracy and limitations, and the assumptions inherent in their use.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcome (ULO)	CO	BLL	PI addressed
Identify the problem requirements from the problems for which	1,2	1,2,4	4.1.1, 4.1.2, 4.1.3
the test cases and the behaviours are to be generated.			
Analyze various software testing techniques to generate test	2,3	3,4	5.2.1, 5.2.3
cases using various techniques			
Apply software testing techniques in commercial environments	3,4	4	5.2.1, 5.2.2, 5.3.1
and assess the adequacy of test suites using control flow, data			

Unit Learning Outcomes (ULO):

flow, and program mutation			
Develop abilities to identify and generate the report	4	3,4	5.3.2
Use industry-standard testing tools for real time applications.	5	5	5.3.3

Course Content:

Hours Required	Topic to be covered	Mode of Delivery
	UNIT-I	
1	BASICS OF SOFTWARE TESTING: Human Errors and Testing;	Chalk and talk in classroom Lecture combined with
2	Software Quality: Quality attributes, Reliability.	discussions
3	Requirements, Behaviour and Correctness; Correctness versus Reliability.	Assignments
4	Testing and Debugging; Test Metrics;	
5	Software and Hardware Testing: Testing and Verification	
6	Defect Management; Execution History;	-
7	Test generation Strategies,	-
8	Static Testing: Walkthroughs, inspections, use of static code analysis tools in static testing.	
9	Model-Based Testing and Model Checking Control-Flow Graph;	
10	Examples for Control Flow Graph, Types of Testing; UNIT-II	Chalk and talk in classroom
11	TEST GENERATION FROM REQUIREMENTS – 1: Introduction;	Lecture combined with discussions
12	The Test-Selection Problem;	Assignments
13	Equivalence Partitioning; Fault Targeted, relations and equivalence partitioning. Solving	
14	Unidimensional versus multidimensional partitioning, Examples on Equivalence partitioning method	
15	Boundary Value Analysis; Solving Examples on Boundary Value Analysis	
16	Category-Partition Method: Solving Examples on Category-Partition Method.	
17	Cause-Effect Graphing: Solving Examples on Cause-Effect Graphing	
18	Test Generation from Predicates: Predicates and Boolean expressions, Fault model for predicate testing.	
19	Predicate constraint, predicate testing criteria, Generating BOR, BRO and BRE-adequate tests.	
20	.Cause effect graphs and predicate testing, Fault Propagation.	Chalk and talk in classroom Lecture combined with
	UNIT-III	discussions
21	STRUCTURAL TESTING:	Assignments
	Overview; Statement testing;	4
22	Branch testing; Condition testing,	
23	Path testing; Procedure call testing;	
24	Comparing structural testing criteria; The infeasibility problem.	

25	DEPENDENCE, DATA FLOW MODELS, AND DATA	
	FLOW	
	TESTING: Definition-Use pairs; Data flow analysis;	
26	Classic analyses; From execution to conservative flow	
	analysis;	
27	Data flow analysis with arrays and pointers; Inter-	
	procedural analysis;	
28	DATA FLOW TESTING: Overview of data flow testing;	
29	Data flow coverage with complex structures; The	
	infeasibility problem.	
30	Examples.	
	UNIT-IV	Chalk and talk in classroom
31	TEST CASE SELECTION AND ADEQUACY, TEST	Lecture combined with
	EXECUTION:	discussions
	Overview; Test specification and cases; Adequacy criteria;	Assignments
	Comparing criteria.	
32	TEST CASE SELECTION AND ADEQUACY, TEST	;
	EXECUTION:	
	Overview; Test specification and cases; Adequacy criteria;	
	Comparing criteria;	
33	Overview of test execution; From test case specification to	
	test cases; Scaffolding;	
34	Generic versus specific scaffolding; Test oracles; Self-	
	checks as oracles; Capture and replay	
35	PROCESS:	
	Test and analysis activities within a software process: The	
	quality process;	
36	Planning and monitoring; Quality goals;	
37	Dependability properties; Analysis; Testing; Improving the	
	process; Organizational factors.	
38	Integration and component-based software testing:	
	Overview; Integration testing strategies;	
39	Testing components and assemblies. Acceptance and	
	Regression Testing: Overview; System testing; Acceptance	
	testing; Usability;	
40	Regression testing; Regression test selection techniques.	

Review Questions:

Students should be able to identify the requirements from the problem requirement statement that require AI solutions							
Use different testing techniques							
Analysis of the problem, represent the solution in the form of control diagram, flow diagram. Analyze the complexity of the solution generated by using different techniques							
Use different testing tools for real time applications to check for validation.							
	1	1					
Review Questions	ULO	BLL	PI addressed				
Define Software testing. Discuss various attributes used for	1	1,2	4.1.2				
measuring software quality.							
Discuss different techniques used for generating the test cases	1	3	4.1.3				

of a given problem.			
Show the relationship between human, error and fault with flow	1	2	4.2.3
diagram			
Generate the test cases for the problem statement given as	2	4	5.2.2, 5.2.3
requirement 1: Write a program that inputs a sequence of			
integer numbers and outputs sorted list in ascending order for			
the request character as A , descending order for request			
character D and invalid request character for any other request			
character.			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks(10)	СО	PI	РО
Assignment 1: Generating test cases for the given	5	1	4.1.2	4,5
problem using various testing techniques.				
Assignment 2: Identify the requirements needed from	5	2	5.3.3	4,5
the problem statement. Designing the data flow				
diagrams , control flow diagrams.				

Vasudhe V. Ayyannavar 0 Professor and Head Toostment of Computer Science and Engineerin Basaveshwar Engineering College Badalkot 58710?

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

COURSE PLAN

Title of Course	:	Cyber Security	Course Code	:	UCS762C
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	7	Year	:	2023-24

Prerequisites:

Operating System concepts, Linux , Computer Networks

Course Objectives:

	The Course objectives are:
1	To analyse and evaluate the cyber security needs of an organization.
2	To familiarize cybercrime terminologies and perspectives
3	To understand Cyber Offenses and Botnets
4	To gain knowledge on tools and methods used in cybercrimes
5	To understand phishing and computer forensics

Course Outcomes:

	At the end of the course the student should be able to:
1	Analyse and evaluate the cyber security needs of an organization.
2	Explain the cybercrime terminologies
3	Describe Cyber offenses and Botnets
4	Illustrate Tools and Methods used on Cybercrime, Phishing and Identity Theft.
5	Justify the need of computer forensics.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	analyse and evaluate the cyber security needs of an organization.	1			1											
2	Explain the cybercrime terminologies				2											
3	Describe Cyber offenses and Botnets	1							2					1		
4	Illustrate Tools and Methods used on Cybercrime,Phishing, and Identity Theft.		2		3	3									1	
5	Justify the need of computer forensics					2			2					1		

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Competency	Indicators
 Identify complex engineering problem 	 Students should be able to identify cyber security problemsthat require solutions ii. Identify the security domains where Expert Systems may be developed
 Design a system and identify system requirements 	 iii. Analysis of the problem, represent the knowledge iv. Encode the knowledge v. Augment the knowledge vi. Analyse the complexity of the solution
 Consideration for public health, safety 	 vii. Designing systems for healthcare, cybersecurity, and safety viii. Employ knowledge representation, search, inference, and reasoning abilities
4. Cultural, societal and environmental	ix. Applying the cyber security for

considerations	societal needs and technical ,human as well as software and hardware
	protection, especially the problems
	like hacking, phishing , money laundering, forgery, ensuring techno
	social and ethical responsibilities.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	СО	BLL	PI address ed
Understanding the world of cybercrime and Cyber Security in legal as well as technical perspectives.how criminals plan the attacks, Social Engineering, Cyber Stalking, Cybercafé & cybercrimes,	1,2	1,2,4	i, ii, iii, iv, v, and vi
Identifying modern trends in Mobility, Credit card Frauds in mobile and wireless computing, security challenges posed by mobile devices	3	3,5	li, iii,v,vii
Tools and Methods used in Cybercrime like Anonymizers, Phishing, Password Cracking, Key Loggers and Skyways, Virus	4	3,4	v,vii,viii
Understanding Computer Forensics and Cyber Forensic along with forensic as well as anti-forensic tools and methods.	5	`1,2, 4,5	l,iv,v,viii

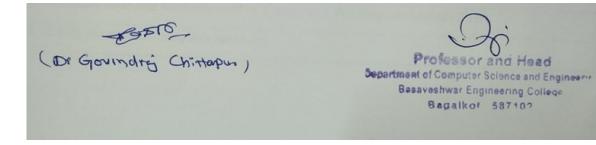
Course Content:

Hours Required	Topic to be covered	Mode of Delivery		
01	Introduction to Cybercrime:	i.	PPT's	
01	Definition and Origins of the Word, Cybercrime, and	ii.	Chalk and talk in	
	Information Security,		classroom	
01	who are Cybercriminals?	iii.	Group Assignment	
01	Classifications of Cybercrimes, the legal perspective	iv.	Case study	
01	Classifications of Cybercrimes			
01	Hacking and Indian Laws., Global Perspectives			
01	Cyber Offences: How Criminals Plan Them: Introduction			
01	how criminals plan the attacks			
01	Social Engineering, -Cyber Stalking,			
01	Cybercafé & cybercrimes,			
01	Cyber Offences: Botnets: The fuel for cybercrime,	i.	ppts	
	Attack Vector	ii.	Tutorial	
01	Cybercrime: Mobile and Wireless Devices	iii.	Assignments	
01	Trends in Mobility, Credit card Frauds in mobile	iv.	Group Assignment	
	and wireless computing	V.	Seminars,	
01	security challenges posed by mobile devices,		Presentations	
	Registry setting for mobile devices,	vi.	Case study with	
01	Authentication Service security		device security	
01	attacks on mobiles		tools	
01	Mobile Devices: security implications for			
	organizations			
01	Tools on device security			
01	Protection of digital devices			
01	Group discussion of protection and legal issues of device hacking			

01	Tools and Methods used in Cybercrime:	i.	PPT's
01	Introduction, Proxy Servers, Anonymizers,	ii.	Lecture combined
	Phishing,		with discussions
01	Password Cracking, Key Loggers and Spyways,	iii. iv.	Tutorial Demonstration
01	Virus and Worms, Trozen Horses and Backdoors,	v.	Group Assignment
	Steganography,	vi.	Seminars,
01	DoS and DDOS Attacks, Attacks on Wireless		Presentations
	networks.	vii.	Group Discussion
01	Phishing and Identity Theft: Introduction, methods		
01	of phishing,		
01	phasing techniques		
01	spear phishing,	1	
01	Types of phishing scams,	-	
01	phishing toolkits and spy phishing, counter measures, Identity Theft	-	
01	Case study discussion on cybercrime as phishing.		
01	Understanding Computer Forensics: Introduction,	i.	ppts
	Historical Background of Cyber	ii.	Lecture combined
01	forensics, Digital Forensics Science, Need for		with discussions
	Computer Forensics	iii.	Assignments
01	Cyber Forensics and Digital Evidence,	iv.	Demonstration
01	Digital Forensic Life cycle,	v. vi.	Group Assignment Seminars,
01	Chain of Custody Concepts, network forensics.	VI.	Presentations
01	Approaching a computer forensic investigation:	vii.	Case study on
	solving a computer forensic case.		digital forensic
01	computer forensic and steganography	1	tools.
01	Relevancy of the OSI 7-layer model to computer		
	forensic		
01	Forensic, and social networking sites, challenges in	1	
	computer forensics,		
01	Spatial tools and techniques. Forensic auditing, ant		
	forensics		

Review Questions:

		ModuleI to IV	*Bloom's Taxonomy Level	Marks	
Q.01	a	Definecomputercrime.DiscussaboutCyberpunkandCyberwarfare	L2	8	
	b	Listthevariouscybercrimesagainstpropertyandagainstorganization	L1	6	
	c	DiscusscybercrimeandtheIndianITA2000	L2	6	
Q.02	a	Whoarecybercriminals?Discussthethreegroupsofcybercriminals	L3	8	
	b	DiscussaboutCyberdefamationindetail.	L3	6	
	c	ExplainpasswordSniffingandmailbombstechniques.	L2	6	
Q.03	a	WhatisSocialEngineering?DiscussHumanBasedSocialEngineeringwithasuita bleexample	L3	8	
	b	Explainhowcriminalsplantheattacks?Listthephasesinvolvedinplanningcyberc rimes	L2	6	
	c	Listandbrieflyexplainanysixtipsforsafetyandsecuritywhileusingthecomputersinac ybercafé	L2	6	
Q.04	a	DefineCyberStalkingalongwithitsworking.ExplaintwotypesofStalkers	L3	8	
	b	Differentiatebetweenpassiveattacksandactiveattacks	L2	6	
	c	DefineBotandBotnet.Withadiagram,explainhowBotnetscreatebusiness?	L3	6	
Q.05	a	WhatarehardwarekeyloggersandAntikeyloggers?Listtheadvantagesofusingan tiloggers	L2	8	
	b	WhatisaProxyserver?Whatisitspurpose?	L2	6	
	c	What is a Back door? Discuss any four examples of Back door Trojans	L2	6	
Q.06	a	$\label{eq:constraint} Discuss various types of Virus escategorized based on attack son various elements of the system$	L3	8	
	b	Whatisfishing?Howfishingworks?	L3	6	
	c	DiscussfourtypesofDoSattacks	L2	6	
Q.07	a	Explainfourtypesofmethodsusedbythephisherstorevealpersonalinfor mationonInternet	L2	10	
	b	DiscussvarioustypesofPhishingScams	L3	10	
Q.08	a	Discuss the various techniques used by Phisherstolaunch Phishing attacks	L3	10	
	b	DiscussvarioustypesofIdentityThefttechniques.	L3	10	
Q.09	a	DiscussthefollowingphasesofForensicslifecycles i) PreparationandIdentification ii) CollectionandRecording			
	b	ListvariousComputerForensicsservicesavailable,explainanytwoofthem.	L2	6	


	c	BrieflyexplainRFC2822	L2	4
0.10		DiscussthefollowingphasesofForensicslifecycle	1.2	10
Q.10	a	i) StoringandTransporting ii) Examination/Investigation		10
	b	DiscusstheneedforconceptofComputerForensics	L3	6
	с	BrieflyexplainNetworkForensics	L2	4

Evaluation Scheme:

Assessment	Marks	Weightage	
CIE-I	20	20	
CIE-II	20	20	
Assignments/ Quizzes/Case Study/ Course Project/Term	10	10	
Paper/Field Work			
SEE	50	50	
Total	100	100	

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1: Group case study1:	03	1,2	i, ii	1	1,2
Demonstration of ethical hacking techniques					
Assignment 2: Group case study1	04	3,4	lii, iv	3	3,4
Tool's demonstration of cybercrime techniques					
to detect digital crimes in digital world.					
Assignment 3: Review Report Submission by	03	1,2,3,4,5	v, vi	2	5
refereeing case study1 and case study 2.					

